
apper
Release .1

Patrick Rainsberry

May 27, 2021

CONTENTS

1 The User Guide 3
1.1 Intro . 3
1.2 Installation . 3
1.3 Existing Projects . 6
1.4 3rd Party Libraries . 7
1.5 Commands . 8
1.6 Events . 12

2 The API Documentation / Guide 13
2.1 Developer Interface . 13

3 Indices and tables 23

Python Module Index 25

Index 27

i

ii

apper, Release .1

Apper is a framework to simplify the creation of Fusion 360 Addin.

There are many tasks and to launch and clean up a standard Fusion 360 add-in. This project aims to simplify that
process and help you get started as quickly as possible.

It also includes a number of resources to simplify and speed up the process of creating Fusion 360 add-ins.

CONTENTS 1

apper, Release .1

2 CONTENTS

CHAPTER

ONE

THE USER GUIDE

This part of the documentation, will give you a quick introduction to the project and help get you started creating your
first add-in.

1.1 Intro

TODO

Will add some description of working with the Fusion 360 API and the rational for the project

1.2 Installation

The easiest way to get started with apper is to start from a template project.

This will download and structure a new add-in for you on your local system.

You can set some basic parameters and the template will generate everything you need to get started.

1.2.1 Prerequisites

• Python interpreter

• Install Git

• Adjust your path

• Packaging tools

Python interpreter

Install Python for your operating system. Fusion 360 uses Python 3.7 so it is recommended to install this version
locally as it will simplify setting up your development environment in general.

Consult the official Python documentation for details.

You can install the Python binaries from python.org.

3

https://docs.python.org/3/using/index.html
https://www.python.org/downloads/mac-osx/

apper, Release .1

Install Git

Git is a free and open source distributed version control system designed to handle everything from small to very large
projects with speed and efficiency.

You will need to have git installed to properly setup your local environment. It is recomended to just install github
desktop if you do not already have git installed locally.

Alternatively you can review other installation options.

Adjust your path

Ensure that your bin folder is on your path for your platform. Typically ~/.local/ for UNIX and macOS, or
%APPDATA%\Python on Windows. (See the Python documentation for site.USER_BASE for full details.)

MacOS

For bash shells, add the following to your .bash_profile (adjust for other shells):

Add ~/.local/ to PATH
export PATH=$HOME/.local/bin:$PATH

Remember to load changes with source ~/.bash_profile or open a new shell session.

Windows

Ensure the directory where cookiecutter will be installed is in your environment’s Path in order to make it possible to
invoke it from a command prompt. To do so, search for “Environment Variables” on your computer (on Windows 10,
it is under System Properties –> Advanced) and add that directory to the Path environment variable, using
the GUI to edit path segments.

Example segments should look like %APPDATA%\Python\Python3x\Scripts, where you have your version
of Python instead of Python3x.

You may need to restart your command prompt session to load the environment variables.

See also:

See Configuring Python (on Windows) for full details.

Install cookiecutter

cookiecutter creates projects from project templates and is an amazing resource

For more detailed installation instructions see their documentation

First install cookie cutter into your local python environment

pip install cookiecutter

Or potentially if you have a separate python 3 installation you may need to use:

pip3 install cookiecutter

4 Chapter 1. The User Guide

https://desktop.github.com/
https://desktop.github.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.python.org/3/library/site.html#site.USER_BASE
https://docs.python.org/3/using/windows.html#configuring-python
https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://cookiecutter.readthedocs.io/en/latest/installation.html

apper, Release .1

1.2.2 Using the Template

Navigate to the Fusion 360 Addins directory

Putting your addin in the following directory will allow Fusion 360 to automatically recognize it

Mac:

cd ~
cd /Library/Application Support/Autodesk/Autodesk\ Fusion\ 360/API/AddIns/

Windows:

cd C:\Users\%YOUR_USER_NAME%\AppData\Roaming\Autodesk\Autodesk Fusion 360\API\AddIns

Run the cookiecutter template

This will create your add-in directory.

cookiecutter https://github.com/tapnair/cookiecutter-fusion360-addin.git

Open your new add-in

In Fusion 360 click on the tools tab and select the Scripts and Add-ins command

1.2. Installation 5

apper, Release .1

You can now either Run your new add-in or select Edit to open it in VS Code

1.3 Existing Projects

Adding apper to an existing project is not too difficult

1.3.1 Adding a Git Submodule

The best way to leverage apper in your addin project is to use Git Submodules

This way you can easily update to the latest version of apper if it is enhanced

Note: if you are using the Template files from HERE then this step is already done for you

This assumes you already have your project in a Git Repository

Open a terminal and navigate to your addin’s root directory:

You should be someplace like this:

6 Chapter 1. The User Guide

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/docs/gittutorial

apper, Release .1

$ pwd

/Users/rainsbp/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/
→˓FusionApperSample

Now add the submodule to your project:

$ git submodule add https://github.com/tapnair/apper
Cloning into '/Users/rainsbp/Library/Application Support/Autodesk/Autodesk Fusion 360/
→˓API/AddIns/FusionApperSample/apper'...
remote: Enumerating objects: 31, done.
remote: Counting objects: 100% (31/31), done.
remote: Compressing objects: 100% (25/25), done.
remote: Total 31 (delta 6), reused 29 (delta 4), pack-reused 0
Unpacking objects: 100% (31/31), done.

1.3.2 Status of a Git Submodule

To check the status of apper from the project root directory:

$ git submodule status
+e951ad1030b6ed8fb60db3bac7e1098d64289833 apper (remotes/origin/HEAD)

1.3.3 Update a Git Submodule

As apper continues to be developed, the advantage of submodules is that you can always simply and easily updated
the apper framework inside of your addin.

To update apper from the project root directory:

$ git submodule update --remote
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 4 (delta 1), pack-reused 0
Unpacking objects: 100% (4/4), done.
From https://github.com/tapnair/apper 5035ffb..e951ad1 master -> origin/master
Submodule path 'apper': checked out 'e951ad1030b6ed8fb60db3bac7e1098d64289833'

1.4 3rd Party Libraries

There is an included helper class to use 3rd party libraries in a reasonably “safe” way.

1.4. 3rd Party Libraries 7

apper, Release .1

1.4.1 Using 3rd Party Libraries with Fusion 360 Add-ins

Because Fusion 360 uses its own internal python runtime for the execution of add-ins there are some unique challenges
to using 3rd party libraries.

Especially when those libraries have dependancies on other additional libraries. For example, Requests actually re-
quires a number of other libraries. These libraries are expecting each other to also be in the sys.path of the currently
running python interpreter. So it is not sufficient to simply install Requests to a project subdirectory and use a relative
import, since even though you have imported requests, modules within requests will attempt to directly import other
modules that requests installed as dependencies.

Here is one method that can be used to deal with these issues:

1. Install the library to a subdirectory of your project such as ‘lib’

2. Temporarily add the location of that directory to your system path

3. Import the required package

4. Use the package

5. Remove the location from the system path

1.4.2 The lib_import class

There is a decorator class in Fusion360Utilities called: lib_import that will simplify this process for you.

1.5 Commands

1.5.1 App Structure

Once you have executed the cookiecutter template. You will have the following directory and file structure in your
new addin folder.

When running an addin Fusion 360 expects to see a directory with a .py and .manifest file all with the same name.
This is the minimum requirement for your application to be recognized. You should see these two files with your app
name in the new directory. The manifest file doesn’t really require much editing.

ApperSample
apper

...
commands

__init__.py
SampleActiveSelectionEvents.py
SampleCommand1.py
SampleCommand2.py
SampleCommandEvents.py
SampleCustomEvent.py
SampleDocumentEvents.py
SamplePaletteCommand.py
SampleWebRequestEvent.py
SampleWorkspaceEvent.py
palette_html

ApperSample.html
resources

command_icons

(continues on next page)

8 Chapter 1. The User Guide

https://requests.readthedocs.io/en/master/

apper, Release .1

(continued from previous page)

...
palette_icons

...
lib

Place_3rd_Party_libraries_here.txt
ApperSample.py
ApperSample.manifest
config.py
startup.py
LICENCE
README.md

Your_App.py (ApperSample in this case) is the main entry point to the app. Here you will define the commands that
will be added and where they will be placed in the ui.

1.5.2 Imports

In this sample the commands and events are defined in a number of files that need to be imported. Typically I create
each command in its own file unless there are two commands that will be sharing much of the same logic, but it doesn’t
really matter.

import adsk.core
import traceback

from.startup import setup_app, cleanup_app, get_app_path
setup_app(__file__)

try:
import config
import apper

Basic Fusion 360 Command Base samples
from commands.SampleCommand1 import SampleCommand1
from commands.SampleCommand2 import SampleCommand2

Palette Command Base samples
from commands.SamplePaletteCommand import SamplePaletteSendCommand,

→˓SamplePaletteShowCommand

Various Application event samples
from commands.SampleCustomEvent import SampleCustomEvent
from commands.SampleDocumentEvents import SampleDocumentEvent1,

→˓SampleDocumentEvent2
from commands.SampleWorkspaceEvents import SampleWorkspaceEvent
from commands.SampleWebRequestEvent import SampleWebRequestOpened
from commands.SampleCommandEvents import SampleCommandEvent
from commands.SampleActiveSelectionEvents import SampleActiveSelectionEvent

1.5. Commands 9

apper, Release .1

1.5.3 Create the App

To create commands in your addin the first step is to create an instance of FusionApp

my_addin = apper.FusionApp('ApperSample ', "Autodesk ", False)

1.5.4 Standard Commands

Commands are created by subclassing Fusion360CommandBase and overriding their on_xxx methods.

You add commands to an apper based add-in by calling the FusionApp.add_command() function

Sample Command 1

This is adding the command to a panel called “Commands” on the apps Tab in the solid environment.

SampleCommand1 is the basic Hello World Fusion 360 command.

It adds a button to the UI that, when clicked, will display a message box with some text.

Command Definition

In the main add-in file we will define the command placement in the UI and define which command the button will
be ascociated with. The .. autofunction:: apper.FusionApp.FusionApp.add_command function takes the name of the
command, the command class, and a set of options.

my_addin.add_command(
'Sample Command 1',
SampleCommand1,
{

'cmd_description': 'Hello World!',
'cmd_id': 'sample_cmd_1',
'workspace': 'FusionSolidEnvironment',
'toolbar_panel_id': 'Commands',
'cmd_resources': 'command_icons',
'command_visible': True,
'command_promoted': True,

}
)

Learn more about available options by clicking here

Command Class

This command class is defined in a separate file called SampleCommand1.py

You can see we are subclassing the Fusion360CommandBase. It is not really important to understand the details of
this, but if you just follow this format it will be easy to replicate.

Inside your command class definition you will override one or methods :

• Fusion360CommandBase.on_create()

• Fusion360CommandBase.on_execute()

• Fusion360CommandBase.on_preview()

10 Chapter 1. The User Guide

apper, Release .1

• Fusion360CommandBase.on_input_changed()

• Fusion360CommandBase.on_destroy()

In this case we are only overriding the Fusion360CommandBase.on_execute() method. So when the user
clicks the button the code in this function is immediately executed.

import adsk.core
from ..apper import apper
from ..apper.apper import AppObjects

class SampleCommand1(apper.Fusion360CommandBase):
def on_execute(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs,

→˓args, input_values):
ao = AppObjects()
ao.ui.messageBox("Hello World!")

Sample Command 2

Now let’s look at a little more complete add-in. In this case we are going to override a number of methods in the
Fusion360CommandBase class.

on_create

The Fusion360CommandBase.on_create() function is executed when the user clicks your icon in the Fusion
360 UI. This is typically where you would define a set of user inputs for your command. The Fusion 360 API makes
creating these user interfaces very easy. By getting a reference to the CommandInputs of the command, you can simply
add items to the interface. Ass you add items Fusion 360 basically adds them to the bottom of the stack.

def on_create(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs):

General purpose helper class for quick access to common objects
ao = AppObjects()

Create a default value using a string
default_value = adsk.core.ValueInput.createByString('1.0 in')

Get teh user's current units
default_units = ao.units_manager.defaultLengthUnits

Create a value input. This will respect units and user defined equation input.
inputs.addValueInput('value_input_id', '*Sample* Value Input', default_units,

→˓default_value)

Other Input types
inputs.addBoolValueInput('bool_input_id', '*Sample* Check Box', True)
inputs.addStringValueInput('string_input_id', '*Sample* String Value', 'Some

→˓Default Value')
inputs.addSelectionInput('selection_input_id', '*Sample* Selection', 'Select

→˓Something')

Read Only Text Box
inputs.addTextBoxCommandInput('text_box_input_id', 'Selection Type: ', 'Nothing

→˓Selected', 1, True)

(continues on next page)

1.5. Commands 11

apper, Release .1

(continued from previous page)

Create a Drop Down
drop_down_input = inputs.addDropDownCommandInput('drop_down_input_id', '*Sample*

→˓Drop Down',
adsk.core.DropDownStyles.

→˓TextListDropDownStyle)
drop_down_items = drop_down_input.listItems
drop_down_items.add('List_Item_1', True, '')
drop_down_items.add('List_Item_2', False, '')

on_input_changed

The Fusion360CommandBase.on_input_changed() function is executed when the user changes any input
value in your ui. This function is typically used to make adjustments to the user interface itself. For example you may
want to hide or show certain options based on another input such as a checkbox for “advaced options” or something
along those lines. In this case we are updating the text box text with the object type of whatever the user has selected.
Note code in this method will not affect the graphics window. If you want to update the displayed geometry you should
use the Fusion360CommandBase.on_preview() method.

1.6 Events

12 Chapter 1. The User Guide

CHAPTER

TWO

THE API DOCUMENTATION / GUIDE

If you are looking for information on a specific function, class, or event, this part of the documentation is for you.

2.1 Developer Interface

This part of the documentation covers all the interfaces of Apper.

2.1.1 Core Apper Modules

The core Apper functionality can be accessed by sub-classing these 3 classes. Step one is to create an instance
of the FusionApp object. Step two is to add instances of apper.Fusion360CommandBase and apper.
PaletteCommandBase classes. Each instance of these classes will be a new command in your add-in.

class apper.FusionApp(name, company, debug)
Base class for creating a Fusion 360 Add-in

Parameters

• name (str) – The name of the addin

• company (str) – the name of your company or organization

• debug (bool) – set this flag as True to enable more interactive feedback when developing.

add_command(name, command_class, options)
Adds a command to the application

Parameters

• name (str) – The name of the command

• command_class (Any) – This should be your subclass of ap-
per.Fusion360CommandBase or apper.PaletteCommandBase

• options (dict) – Set of options for the command see the full set of options

add_command_event(event_id, event_type, event_class)
Register a workspace event that can respond to various workspace actions

Parameters

• event_id (str) – A unique identifier for the event

• event_type (Any) – One of [UserInterface.commandCreated, UserInter-
face.commandStarting, UserInterface.commandTerminated]

• event_class (Any) – Your subclass of apper.Fusion360CommandEvent class

13

apper, Release .1

add_custom_event(event_id, event_class, auto_start=True)
Register a custom event to respond to a function running in a new thread

Parameters

• event_id (str) – A unique identifier for the event

• event_class (Any) – Your subclass of apper.Fusion360CustomThread

• auto_start (bool) – Whether the thread should start when the addin starts

add_custom_event_no_thread(event_id, event_class)
Register a custom event

Parameters

• event_id (str) – A unique identifier for the event

• event_class (Any) – Your subclass of apper.Fusion360CustomThread

add_custom_feature(name, feature_class, options)
Register a workspace event that can respond to various workspace actions

Parameters

• name (str) – The name of the command

• feature_class (Any) – This should be your subclass of ap-
per.Fusion360CustomFeatureBase

• options (dict) – Set of options for the command see the full set of options

Return type Any

add_document_event(event_id, event_type, event_class)
Register a document event that can respond to various document actions

Parameters

• event_id (str) – A unique identifier for the event

• event_type (DocumentEvent) – Any document event in the current application

• event_class (Any) – Your subclass of apper.Fusion360DocumentEvent

add_web_request_event(event_id, event_type, event_class)
Register a workspace event that can respond to various workspace actions

Parameters

• event_id (str) – A unique identifier for the event

• event_class (Any) – Your subclass of apper.Fusion360WebRequestEvent

• event_type (WebRequestEvent) – Opened or Inserting from URL event type such
as (app.openedFromURL)

add_workspace_event(event_id, workspace_name, event_class)
Register a workspace event that can respond to various workspace actions

Parameters

• event_id (str) – A unique identifier for the event

• workspace_name (str) – name of the workspace (i.e.

• event_class (Any) – Your subclass of apper.Fusion360WorkspaceEvent

14 Chapter 2. The API Documentation / Guide

apper, Release .1

check_for_updates()
Not Implemented

command_id_from_name(name)
Returns the full cmd_id defined by apper

Parameters name (str) – this is the value set in options for cmd_id

Return type Optional[str]

Returns The full cmd_id (i.e. CompanyName_AppName_cmd_id)

get_all_preferences()
Gets all preferences stored for this application

Return type dict

Returns All preferences as a dictionary

get_group_preferences(group_name)
Gets preferences for a particular group (typically a given command)

Parameters group_name (str) – name of parent group in which to store preferences

Return type dict

Returns A dictionary of just the options associated to this particular group

initialize_preferences(defaults, force=False)
Initializes preferences for the application

Parameters

• defaults (dict) – a default set of preferences

• force – If True, any existing user preferences will be over-written

Returns “Created”, “Exists”, or “Failed”

Return type A string with possible values

static read_json_file(file_name)
Static method to read a json file and return a dictionary object

Will fail if the input file cannot be interpreted as a JSON object

Returns Input file as a dictionary

run_app()
Runs the Addin

save_preferences(group_name, new_group_preferences, merge)
Saves preferences for the application

Parameters

• group_name (str) – name of parent group in which to store preferences

• new_group_preferences (dict) – Dictionary of preferences to save

• merge (bool) – If True then the new preferences in the group will be merged, if False
all old values are deleted

Returns “Updated”, “Created”, or “Failed”

Return type A string with possible values

2.1. Developer Interface 15

apper, Release .1

stop_app()
Stops the Addin and cleans up all of the created UI elements

2.1.2 Other Modules

Fusion360Utilities.py

Tools to leverage when creating a Fusion 360 Add-in

copyright

(c) 2019 by Patrick Rainsberry.

license Apache 2.0, see LICENSE for more details.

class apper.Fusion360Utilities.AppObjects
The AppObjects class wraps many common application objects required when writing a Fusion 360 Addin.

property cam
adsk.cam.CAM from the active document

Note if the document has never been activated in the CAM environment this will return None

Returns: adsk.cam.CAM from the active document

Return type Optional[CAM]

property design
adsk.fusion.Design from the active document

Returns: adsk.fusion.Design from the active document

Return type Optional[Design]

property document
adsk.fusion.Design from the active document

Returns: adsk.fusion.Design from the active document

Return type Optional[Document]

property export_manager
adsk.fusion.ExportManager from the active document

Returns: adsk.fusion.ExportManager from the active document

Return type Optional[ExportManager]

property f_units_manager
adsk.fusion.FusionUnitsManager from the active document.

Only work in design environment.

Returns: adsk.fusion.FusionUnitsManager or None if in a different workspace than design.

Return type Optional[FusionUnitsManager]

property product
adsk.fusion.Design from the active document

Returns: adsk.fusion.Design from the active document

Return type Optional[Product]

16 Chapter 2. The API Documentation / Guide

apper, Release .1

property root_comp
Every adsk.fusion.Design has exactly one Root Component

It should also be noted that the Root Component in the Design does not have an associated Occurrence

Returns: The Root Component of the adsk.fusion.Design

Return type Optional[Component]

property time_line
adsk.fusion.Timeline from the active adsk.fusion.Design

Returns: adsk.fusion.Timeline from the active adsk.fusion.Design

Return type Optional[Timeline]

property units_manager
adsk.core.UnitsManager from the active document

If not in an active document with design workspace active, will return adsk.core.UnitsManager if possible

Returns: adsk.fusion.FusionUnitsManager or adsk.core.UnitsManager if in a different workspace than
design.

Return type Optional[UnitsManager]

apper.Fusion360Utilities.combine_feature(target_body, tool_bodies, operation)
Creates Combine Feature in target with all tool bodies as source

Parameters

• target_body (BRepBody) – Target body for the combine feature

• tool_bodies (List[BRepBody]) – A list of tool bodies for the combine

• operation (FeatureOperations) – An Enumerator defining the feature operation
type

apper.Fusion360Utilities.create_component(target_component, name)
Creates a new empty component in the target component

Parameters

• target_component (Component) – The target component for the new component

• name (str) – The name of the new component

Return type Occurrence

Returns The reference to the occurrence of the newly created component.

apper.Fusion360Utilities.end_group(start_index)
Ends a adsk.fusion.TimelineGroup

start_index: adsk.fusion.TimelineGroup index that is returned from start_group

apper.Fusion360Utilities.extrude_all_profiles(sketch, distance, component, operation)
Create extrude features of all profiles in a sketch

The new feature will be created in the given target component and extruded by a distance

Parameters

• sketch (Sketch) – The sketch from which to get profiles

• distance (float) – The distance to extrude the profiles.

• component (Component) – The target component for the extrude feature

2.1. Developer Interface 17

apper, Release .1

• operation (FeatureOperations) – The feature operation type from enumerator.

Return type ExtrudeFeature

Returns The new extrude feature.

apper.Fusion360Utilities.get_a_uuid()
Gets a base 64 uuid

Return type str

Returns The id that was generated

apper.Fusion360Utilities.get_default_dir(app_name)
Creates a directory in the user’s home folder to store data related to this app

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.get_item_by_id(this_item_id, app_name)
Returns an item based on the assigned ID set with item_id

Parameters

• this_item_id (str) – The unique id generated originally by calling item_id

• app_name (str) – Name of the Application

Return type Base

Returns The Fusion 360 object that the id attribute was attached to.

apper.Fusion360Utilities.get_log_file(app_name)
Gets the filename for a default log file

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.get_log_file_name(app_name)
Gets the filename for a default log file

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.get_settings_file(app_name)
Create (or get) a settings file name in the default app directory

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.get_std_err_file(app_name)
Get temporary stderr file for the app

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.get_std_out_file(app_name)
Get temporary stdout file for the app

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.import_dxf(dxf_file, component, plane,
is_single_sketch_result=False)

Import dxf file with one sketch per layer.

Parameters

• dxf_file (str) – The full path to the dxf file

• component (Component) – The target component for the new sketch(es)

• plane (Union[ConstructionPlane, BRepFace]) – The plane on which to import
the DXF file.

18 Chapter 2. The API Documentation / Guide

apper, Release .1

• plane – The plane on which to import the DXF file.

• is_single_sketch_result (bool) – If true will collapse all dxf layers to a single
sketch.

Return type ObjectCollection

Returns An ObjectCollection of the created sketches

apper.Fusion360Utilities.item_id(item, group_name)
Gets (and possibly assigns) a unique identifier (UUID) to any item in Fusion 360

Parameters

• item (Base) – Any Fusion Object that supports attributes

• group_name (str) – Name of the Attribute Group (typically use app_name)

Return type str

Returns The id that was generated or was previously existing

class apper.Fusion360Utilities.lib_import(library_folder)
The lib_import class is a wrapper class to allow temporary import of a local library directory

By default it assumes there is a folder named ‘lib’ in the add-in root directory.

First install a 3rd party library (such as requests) to this directory.

Assuming you are in the add-in root directory (sudo may not be required...)
sudo python3 -m pip install -t ./lib requests

Then you can temporarily import the library before making a call to the requests function. To do this use the
@apper.lib_import(. . .) decorator on a function that uses the library.

Here is an example function for using Requests:

@apper.lib_import(config.app_path)
def make_request(url, headers):

import requests
r = requests.get(url, headers=headers)
return r

Parameters

• app_path (str) – The root path of the addin. Should be dynamically calculated.

• library_folder (str, optional) – Library folder name (relative to app root). Defaults
to ‘lib’

apper.Fusion360Utilities.open_doc(data_file)
Simple wrapper to open a dataFile in the application window

Parameters data_file (DataFile) – The data file to open

apper.Fusion360Utilities.read_settings(app_name)
Read a settings file into the default directory for the app

Parameters app_name (str) – Name of the Application

apper.Fusion360Utilities.rect_body_pattern(target_component, bodies, x_axis, y_axis,
x_qty, x_distance, y_qty, y_distance)

Creates rectangle pattern of bodies based on vectors

Parameters

2.1. Developer Interface 19

https://requests.readthedocs.io/en/master/

apper, Release .1

• target_component (Component) – Component in which to create the patern

• bodies (List[BRepBody]) – bodies to pattern

• x_axis (Vector3D) – vector defining direction 1

• y_axis (Vector3D) – vector defining direction 2

• x_qty (int) – Number of instances in direction 1

• x_distance (float) – Distance between instances in direction 1

• y_qty (int) – Number of instances in direction 2

• y_distance (float) – Distance between instances in direction 2

Return type ObjectCollection

apper.Fusion360Utilities.remove_item_id(item, group_name)
Gets (and possibly assigns) a unique identifier (UUID) to any item in Fusion 360

Parameters

• item (Base) – Any Fusion Object that supports attributes

• group_name (str) – Name of the Attribute Group (typically use app_name)

Return type bool

Returns True if successful and False if it failed

apper.Fusion360Utilities.sketch_by_name(sketches, name)
Finds a sketch by name in a list of sketches

Useful for parsing a collection of sketches such as DXF import results.

Parameters

• sketches (Sketches) – A list of sketches. (Likely would be all sketches in active
document).

• name (str) – The name of the sketch to find.

Return type Sketch

Returns The sketch matching the name if it is found.

apper.Fusion360Utilities.start_group()
Starts a time line group

Return type int

Returns The index of the adsk.fusion.Timeline where the adsk.fusion.TimelineGroup will begin

apper.Fusion360Utilities.write_settings(app_name, settings)
Write a settings file into the default directory for the app

Parameters

• app_name (str) – Name of the Application

• settings (dict) – Stores a dictionary as a json string

20 Chapter 2. The API Documentation / Guide

apper, Release .1

Fusion360DebugUtilities.py

Utilities to aid in debugging a Fusion 360 Addin

copyright

(c) 2019 by Patrick Rainsberry.

license Apache 2.0, see LICENSE for more details.

apper.Fusion360DebugUtilities.get_log_file_name()
Creates directory and returns file name for log file :param log: tbd

apper.Fusion360DebugUtilities.perf_log(log, function_reference, command, identifier='')
Performance time logging function :param log: :param function_reference: :param command: :param identifier:

apper.Fusion360DebugUtilities.perf_message(log)
Performance time logging function :param log: tbd

apper.Fusion360DebugUtilities.variable_message(variable, extra_info='')
Displays the value of any single variable as long as the value can be converted to text

Parameters

• variable – variable to print

• extra_info – Any other info to display in the message box

apper.Fusion360DebugUtilities.variables_message(variables)
Print a list of list of variables

Format of variables should be [[Variable name 1, variable value 1], [Variable name 2, variable value 2], . . .]

Parameters variables (list) – A list of lists of any string based variables from your add-in.

2.1. Developer Interface 21

apper, Release .1

22 Chapter 2. The API Documentation / Guide

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

23

apper, Release .1

24 Chapter 3. Indices and tables

PYTHON MODULE INDEX

a
apper, 13
apper.Fusion360DebugUtilities, 20
apper.Fusion360Utilities, 16

25

apper, Release .1

26 Python Module Index

INDEX

A
add_command() (apper.FusionApp method), 13
add_command_event() (apper.FusionApp method),

13
add_custom_event() (apper.FusionApp method),

13
add_custom_event_no_thread() (ap-

per.FusionApp method), 14
add_custom_feature() (apper.FusionApp

method), 14
add_document_event() (apper.FusionApp

method), 14
add_web_request_event() (apper.FusionApp

method), 14
add_workspace_event() (apper.FusionApp

method), 14
apper

module, 13
apper.Fusion360DebugUtilities

module, 20
apper.Fusion360Utilities

module, 16
AppObjects (class in apper.Fusion360Utilities), 16

C
cam() (apper.Fusion360Utilities.AppObjects property),

16
check_for_updates() (apper.FusionApp method),

14
combine_feature() (in module ap-

per.Fusion360Utilities), 17
command_id_from_name() (apper.FusionApp

method), 15
create_component() (in module ap-

per.Fusion360Utilities), 17

D
design() (apper.Fusion360Utilities.AppObjects prop-

erty), 16
document() (apper.Fusion360Utilities.AppObjects

property), 16

E
end_group() (in module apper.Fusion360Utilities), 17
export_manager() (ap-

per.Fusion360Utilities.AppObjects property),
16

extrude_all_profiles() (in module ap-
per.Fusion360Utilities), 17

F
f_units_manager() (ap-

per.Fusion360Utilities.AppObjects property),
16

FusionApp (class in apper), 13

G
get_a_uuid() (in module apper.Fusion360Utilities),

18
get_all_preferences() (apper.FusionApp

method), 15
get_default_dir() (in module ap-

per.Fusion360Utilities), 18
get_group_preferences() (apper.FusionApp

method), 15
get_item_by_id() (in module ap-

per.Fusion360Utilities), 18
get_log_file() (in module ap-

per.Fusion360Utilities), 18
get_log_file_name() (in module ap-

per.Fusion360DebugUtilities), 21
get_log_file_name() (in module ap-

per.Fusion360Utilities), 18
get_settings_file() (in module ap-

per.Fusion360Utilities), 18
get_std_err_file() (in module ap-

per.Fusion360Utilities), 18
get_std_out_file() (in module ap-

per.Fusion360Utilities), 18

I
import_dxf() (in module apper.Fusion360Utilities),

18

27

apper, Release .1

initialize_preferences() (apper.FusionApp
method), 15

item_id() (in module apper.Fusion360Utilities), 19

L
lib_import (class in apper.Fusion360Utilities), 19

M
module

apper, 13
apper.Fusion360DebugUtilities, 20
apper.Fusion360Utilities, 16

O
open_doc() (in module apper.Fusion360Utilities), 19

P
perf_log() (in module ap-

per.Fusion360DebugUtilities), 21
perf_message() (in module ap-

per.Fusion360DebugUtilities), 21
product() (apper.Fusion360Utilities.AppObjects

property), 16

R
read_json_file() (apper.FusionApp static

method), 15
read_settings() (in module ap-

per.Fusion360Utilities), 19
rect_body_pattern() (in module ap-

per.Fusion360Utilities), 19
remove_item_id() (in module ap-

per.Fusion360Utilities), 20
root_comp() (apper.Fusion360Utilities.AppObjects

property), 16
run_app() (apper.FusionApp method), 15

S
save_preferences() (apper.FusionApp method),

15
sketch_by_name() (in module ap-

per.Fusion360Utilities), 20
start_group() (in module apper.Fusion360Utilities),

20
stop_app() (apper.FusionApp method), 15

T
time_line() (apper.Fusion360Utilities.AppObjects

property), 17

U
units_manager() (ap-

per.Fusion360Utilities.AppObjects property),
17

V
variable_message() (in module ap-

per.Fusion360DebugUtilities), 21
variables_message() (in module ap-

per.Fusion360DebugUtilities), 21

W
write_settings() (in module ap-

per.Fusion360Utilities), 20

28 Index

	The User Guide
	Intro
	Installation
	Existing Projects
	3rd Party Libraries
	Commands
	Events

	The API Documentation / Guide
	Developer Interface

	Indices and tables
	Python Module Index
	Index

