

Welcome to apper ‘s documentation!

Apper is a framework to simplify the creation of Fusion 360 Addin.

There are many tasks and to launch and clean up a standard Fusion 360 add-in. This project aims to simplify that process and help you get started as quickly as possible.

It also includes a number of resources to simplify and speed up the process of creating Fusion 360 add-ins.

The User Guide

This part of the documentation, will give you a quick introduction to the project and help get you started creating your first add-in.

	Intro

	Installation
	Prerequisites

	Using the Template

	Existing Projects
	Adding a Git Submodule

	Status of a Git Submodule

	Update a Git Submodule

	3rd Party Libraries
	Using 3rd Party Libraries with Fusion 360 Add-ins

	The lib_import class

	Commands
	App Structure

	Imports

	Create the App

	Standard Commands

	Events

The API Documentation / Guide

If you are looking for information on a specific function, class, or event,
this part of the documentation is for you.

	Developer Interface
	Core Apper Modules

	Other Modules
	Fusion360Utilities.py
	Tools to leverage when creating a Fusion 360 Add-in

	Fusion360DebugUtilities.py
	Utilities to aid in debugging a Fusion 360 Addin

Indices and tables

	Index

	Module Index

	Search Page

Intro

TODO

Will add some description of working with the Fusion 360 API and the rational for the project

Installation

The easiest way to get started with apper is to start from a template project.

This will download and structure a new add-in for you on your local system.

You can set some basic parameters and the template will generate everything you need to get started.

Prerequisites

	Python interpreter

	Install Git

	Adjust your path

	Packaging tools

Python interpreter

Install Python for your operating system. Fusion 360 uses Python 3.7 so it is recommended to install this version locally as it will simplify setting up your development environment in general.

Consult the official Python documentation [https://docs.python.org/3/using/index.html] for details.

You can install the Python binaries from python.org [https://www.python.org/downloads/mac-osx/].

Install Git

Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency.

You will need to have git installed to properly setup your local environment. It is recomended to just install github desktop [https://desktop.github.com/] if you do not already have git installed locally.

Alternatively you can review other installation options [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git].

Adjust your path

Ensure that your bin folder is on your path for your platform. Typically ~/.local/ for UNIX and macOS, or %APPDATA%\Python on Windows. (See the Python documentation for site.USER_BASE [https://docs.python.org/3/library/site.html#site.USER_BASE] for full details.)

MacOS

For bash shells, add the following to your .bash_profile (adjust for other shells):

Add ~/.local/ to PATH
export PATH=$HOME/.local/bin:$PATH

Remember to load changes with source ~/.bash_profile or open a new shell session.

Windows

Ensure the directory where cookiecutter will be installed is in your environment’s Path in order to make it possible to invoke it from a command prompt. To do so, search for “Environment Variables” on your computer (on Windows 10, it is under System Properties –> Advanced) and add that directory to the Path environment variable, using the GUI to edit path segments.

Example segments should look like %APPDATA%\Python\Python3x\Scripts, where you have your version of Python instead of Python3x.

You may need to restart your command prompt session to load the environment variables.

See also

See Configuring Python (on Windows) [https://docs.python.org/3/using/windows.html#configuring-python] for full details.

Install cookiecutter

cookiecutter [https://git-scm.com/book/en/v2/Git-Tools-Submodules] creates projects from project templates and is an amazing resource

For more detailed installation instructions see their documentation [https://cookiecutter.readthedocs.io/en/latest/installation.html]

First install cookie cutter into your local python environment

pip install cookiecutter

Or potentially if you have a separate python 3 installation you may need to use:

pip3 install cookiecutter

Using the Template

Navigate to the Fusion 360 Addins directory

Putting your addin in the following directory will allow Fusion 360 to automatically recognize it

Mac:

cd ~
cd /Library/Application Support/Autodesk/Autodesk\ Fusion\ 360/API/AddIns/

Windows:

cd C:\Users\%YOUR_USER_NAME%\AppData\Roaming\Autodesk\Autodesk Fusion 360\API\AddIns

Run the cookiecutter template

This will create your add-in directory.

cookiecutter https://github.com/tapnair/cookiecutter-fusion360-addin.git

Open your new add-in

In Fusion 360 click on the tools tab and select the Scripts and Add-ins command

[image: Fusion Add-in Dialog]
You can now either Run your new add-in or select Edit to open it in VS Code

Existing Projects

Adding apper to an existing project is not too difficult

Adding a Git Submodule

The best way to leverage apper in your addin project is to use Git Submodules [https://git-scm.com/book/en/v2/Git-Tools-Submodules]

This way you can easily update to the latest version of apper
if it is enhanced

Note: if you are using the Template files from HERE then this step is already done for you

This assumes you already have your project in a Git Repository [https://git-scm.com/docs/gittutorial]

Open a terminal and navigate to your addin’s root directory:

You should be someplace like this:

$ pwd

/Users/rainsbp/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/FusionApperSample

Now add the submodule to your project:

$ git submodule add https://github.com/tapnair/apper
Cloning into '/Users/rainsbp/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/FusionApperSample/apper'...
remote: Enumerating objects: 31, done.
remote: Counting objects: 100% (31/31), done.
remote: Compressing objects: 100% (25/25), done.
remote: Total 31 (delta 6), reused 29 (delta 4), pack-reused 0
Unpacking objects: 100% (31/31), done.

Status of a Git Submodule

To check the status of apper from the project root directory:

$ git submodule status
+e951ad1030b6ed8fb60db3bac7e1098d64289833 apper (remotes/origin/HEAD)

Update a Git Submodule

As apper continues to be developed, the advantage of submodules is that you can always simply and easily updated the apper framework inside of your addin.

To update apper from the project root directory:

$ git submodule update --remote
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (3/3), done.
remote: Total 4 (delta 1), reused 4 (delta 1), pack-reused 0
Unpacking objects: 100% (4/4), done.
From https://github.com/tapnair/apper 5035ffb..e951ad1 master -> origin/master
Submodule path 'apper': checked out 'e951ad1030b6ed8fb60db3bac7e1098d64289833'

3rd Party Libraries

There is an included helper class to use 3rd party libraries in a reasonably “safe” way.

Using 3rd Party Libraries with Fusion 360 Add-ins

Because Fusion 360 uses its own internal python runtime for the execution of add-ins there
are some unique challenges to using 3rd party libraries.

Especially when those libraries have dependancies on other additional libraries. For example,
Requests [https://requests.readthedocs.io/en/master/] actually requires a number of other libraries.
These libraries are expecting each other to also be in the sys.path of the currently running python interpreter.
So it is not sufficient to simply install Requests to a project subdirectory and use a relative import,
since even though you have imported requests,
modules within requests will attempt to directly import other modules that requests installed as dependencies.

	Here is one method that can be used to deal with these issues:
	
	Install the library to a subdirectory of your project such as ‘lib’

	Temporarily add the location of that directory to your system path

	Import the required package

	Use the package

	Remove the location from the system path

The lib_import class

There is a decorator class in Fusion360Utilities called: lib_import
that will simplify this process for you.

Commands

App Structure

Once you have executed the cookiecutter template. You will have the following directory and file structure in your new addin folder.

When running an addin Fusion 360 expects to see a directory with a .py and .manifest file all with the same name. This is the minimum requirement for your application to be recognized. You should see these two files with your app name in the new directory. The manifest file doesn’t really require much editing.

ApperSample
├── apper
│ └── ...
├── commands
│ ├── __init__.py
│ ├── SampleActiveSelectionEvents.py
│ ├── SampleCommand1.py
│ ├── SampleCommand2.py
│ ├── SampleCommandEvents.py
│ ├── SampleCustomEvent.py
│ ├── SampleDocumentEvents.py
│ ├── SamplePaletteCommand.py
│ ├── SampleWebRequestEvent.py
│ ├── SampleWorkspaceEvent.py
│ ├── palette_html
│ │ └── ApperSample.html
│ └── resources
│ ├── command_icons
│ │ └── ...
│ └── palette_icons
│ └── ...
├── lib
│ └── Place_3rd_Party_libraries_here.txt
├── ApperSample.py
├── ApperSample.manifest
├── config.py
├── startup.py
├── LICENCE
└── README.md

Your_App.py (ApperSample in this case) is the main entry point to the app. Here you will define the commands that will be added and where they will be placed in the ui.

Imports

In this sample the commands and events are defined in a number of files that need to be imported. Typically I create each command in its own file unless there are two commands that will be sharing much of the same logic, but it doesn’t really matter.

import adsk.core
import traceback

from.startup import setup_app, cleanup_app, get_app_path
setup_app(__file__)

try:
 import config
 import apper

 # Basic Fusion 360 Command Base samples
 from commands.SampleCommand1 import SampleCommand1
 from commands.SampleCommand2 import SampleCommand2

 # Palette Command Base samples
 from commands.SamplePaletteCommand import SamplePaletteSendCommand, SamplePaletteShowCommand

 # Various Application event samples
 from commands.SampleCustomEvent import SampleCustomEvent
 from commands.SampleDocumentEvents import SampleDocumentEvent1, SampleDocumentEvent2
 from commands.SampleWorkspaceEvents import SampleWorkspaceEvent
 from commands.SampleWebRequestEvent import SampleWebRequestOpened
 from commands.SampleCommandEvents import SampleCommandEvent
 from commands.SampleActiveSelectionEvents import SampleActiveSelectionEvent

Create the App

To create commands in your addin the first step is to create an instance of FusionApp

my_addin = apper.FusionApp('ApperSample ', "Autodesk ", False)

Standard Commands

Commands are created by subclassing Fusion360CommandBase and overriding their on_xxx methods.

You add commands to an apper based add-in by calling the FusionApp.add_command() function

Sample Command 1

This is adding the command to a panel called “Commands” on the apps Tab in the solid environment.

SampleCommand1 is the basic Hello World Fusion 360 command.

It adds a button to the UI that, when clicked, will display a message box with some text.

Command Definition

In the main add-in file we will define the command placement in the UI and define which command the button will be ascociated with. The .. autofunction:: apper.FusionApp.FusionApp.add_command function takes the name of the command, the command class, and a set of options.

my_addin.add_command(
 'Sample Command 1',
 SampleCommand1,
 {
 'cmd_description': 'Hello World!',
 'cmd_id': 'sample_cmd_1',
 'workspace': 'FusionSolidEnvironment',
 'toolbar_panel_id': 'Commands',
 'cmd_resources': 'command_icons',
 'command_visible': True,
 'command_promoted': True,
 }
)

Learn more about available options by clicking here

Command Class

This command class is defined in a separate file called SampleCommand1.py

You can see we are subclassing the Fusion360CommandBase. It is not really important to understand the details of this, but if you just follow this format it will be easy to replicate.

Inside your command class definition you will override one or methods :

	Fusion360CommandBase.on_create()

	Fusion360CommandBase.on_execute()

	Fusion360CommandBase.on_preview()

	Fusion360CommandBase.on_input_changed()

	Fusion360CommandBase.on_destroy()

In this case we are only overriding the Fusion360CommandBase.on_execute() method. So when the user clicks the button the code in this function is immediately executed.

import adsk.core
from ..apper import apper
from ..apper.apper import AppObjects

class SampleCommand1(apper.Fusion360CommandBase):
 def on_execute(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs, args, input_values):
 ao = AppObjects()
 ao.ui.messageBox("Hello World!")

Sample Command 2

Now let’s look at a little more complete add-in. In this case we are going to override a number of methods in the Fusion360CommandBase class.

on_create

The Fusion360CommandBase.on_create() function is executed when the user clicks your icon in the Fusion 360 UI. This is typically where you would define a set of user inputs for your command. The Fusion 360 API makes creating these user interfaces very easy. By getting a reference to the CommandInputs of the command, you can simply add items to the interface. Ass you add items Fusion 360 basically adds them to the bottom of the stack.

def on_create(self, command: adsk.core.Command, inputs: adsk.core.CommandInputs):

 # General purpose helper class for quick access to common objects
 ao = AppObjects()

 # Create a default value using a string
 default_value = adsk.core.ValueInput.createByString('1.0 in')

 # Get teh user's current units
 default_units = ao.units_manager.defaultLengthUnits

 # Create a value input. This will respect units and user defined equation input.
 inputs.addValueInput('value_input_id', '*Sample* Value Input', default_units, default_value)

 # Other Input types
 inputs.addBoolValueInput('bool_input_id', '*Sample* Check Box', True)
 inputs.addStringValueInput('string_input_id', '*Sample* String Value', 'Some Default Value')
 inputs.addSelectionInput('selection_input_id', '*Sample* Selection', 'Select Something')

 # Read Only Text Box
 inputs.addTextBoxCommandInput('text_box_input_id', 'Selection Type: ', 'Nothing Selected', 1, True)

 # Create a Drop Down
 drop_down_input = inputs.addDropDownCommandInput('drop_down_input_id', '*Sample* Drop Down',
 adsk.core.DropDownStyles.TextListDropDownStyle)
 drop_down_items = drop_down_input.listItems
 drop_down_items.add('List_Item_1', True, '')
 drop_down_items.add('List_Item_2', False, '')

on_input_changed

The Fusion360CommandBase.on_input_changed() function is executed when the user changes any input value in your ui. This function is typically used to make adjustments to the user interface itself. For example you may want to hide or show certain options based on another input such as a checkbox for “advaced options” or something along those lines. In this case we are updating the text box text with the object type of whatever the user has selected. Note code in this method will not affect the graphics window. If you want to update the displayed geometry you should use the Fusion360CommandBase.on_preview() method.

Events

Developer Interface

This part of the documentation covers all the interfaces of Apper.

Core Apper Modules

The core Apper functionality can be accessed by sub-classing these 3 classes.
Step one is to create an instance of the FusionApp object.
Step two is to add instances of
apper.Fusion360CommandBase and
apper.PaletteCommandBase classes.
Each instance of these classes will be a new command in your add-in.

	
class apper.FusionApp(name, company, debug)

	Base class for creating a Fusion 360 Add-in

	Parameters

	
	name (str) – The name of the addin

	company (str) – the name of your company or organization

	debug (bool) – set this flag as True to enable more interactive feedback when developing.

	
add_command(name, command_class, options)

	Adds a command to the application

	Parameters

	
	name (str) – The name of the command

	command_class (Any) – This should be your subclass of apper.Fusion360CommandBase or apper.PaletteCommandBase

	options (dict) – Set of options for the command see the full set of options

	
add_command_event(event_id, event_type, event_class)

	Register a workspace event that can respond to various workspace actions

	Parameters

	
	event_id (str) – A unique identifier for the event

	event_type (Any) – One of [UserInterface.commandCreated, UserInterface.commandStarting, UserInterface.commandTerminated]

	event_class (Any) – Your subclass of apper.Fusion360CommandEvent class

	
add_custom_event(event_id, event_class, auto_start=True)

	Register a custom event to respond to a function running in a new thread

	Parameters

	
	event_id (str) – A unique identifier for the event

	event_class (Any) – Your subclass of apper.Fusion360CustomThread

	auto_start (bool) – Whether the thread should start when the addin starts

	
add_custom_event_no_thread(event_id, event_class)

	Register a custom event

	Parameters

	
	event_id (str) – A unique identifier for the event

	event_class (Any) – Your subclass of apper.Fusion360CustomThread

	
add_custom_feature(name, feature_class, options)

	Register a workspace event that can respond to various workspace actions

	Parameters

	
	name (str) – The name of the command

	feature_class (Any) – This should be your subclass of apper.Fusion360CustomFeatureBase

	options (dict) – Set of options for the command see the full set of options

	Return type

	Any

	
add_document_event(event_id, event_type, event_class)

	Register a document event that can respond to various document actions

	Parameters

	
	event_id (str) – A unique identifier for the event

	event_type (DocumentEvent) – Any document event in the current application

	event_class (Any) – Your subclass of apper.Fusion360DocumentEvent

	
add_web_request_event(event_id, event_type, event_class)

	Register a workspace event that can respond to various workspace actions

	Parameters

	
	event_id (str) – A unique identifier for the event

	event_class (Any) – Your subclass of apper.Fusion360WebRequestEvent

	event_type (WebRequestEvent) – Opened or Inserting from URL event type such as (app.openedFromURL)

	
add_workspace_event(event_id, workspace_name, event_class)

	Register a workspace event that can respond to various workspace actions

	Parameters

	
	event_id (str) – A unique identifier for the event

	workspace_name (str) – name of the workspace (i.e.

	event_class (Any) – Your subclass of apper.Fusion360WorkspaceEvent

	
check_for_updates()

	Not Implemented

	
command_id_from_name(name)

	Returns the full cmd_id defined by apper

	Parameters

	name (str) – this is the value set in options for cmd_id

	Return type

	Optional[str]

	Returns

	The full cmd_id (i.e. CompanyName_AppName_cmd_id)

	
get_all_preferences()

	Gets all preferences stored for this application

	Return type

	dict

	Returns

	All preferences as a dictionary

	
get_group_preferences(group_name)

	Gets preferences for a particular group (typically a given command)

	Parameters

	group_name (str) – name of parent group in which to store preferences

	Return type

	dict

	Returns

	A dictionary of just the options associated to this particular group

	
initialize_preferences(defaults, force=False)

	Initializes preferences for the application

	Parameters

	
	defaults (dict) – a default set of preferences

	force – If True, any existing user preferences will be over-written

	Returns

	“Created”, “Exists”, or “Failed”

	Return type

	A string with possible values

	
static read_json_file(file_name)

	Static method to read a json file and return a dictionary object

Will fail if the input file cannot be interpreted as a JSON object

	Returns

	Input file as a dictionary

	
run_app()

	Runs the Addin

	
save_preferences(group_name, new_group_preferences, merge)

	Saves preferences for the application

	Parameters

	
	group_name (str) – name of parent group in which to store preferences

	new_group_preferences (dict) – Dictionary of preferences to save

	merge (bool) – If True then the new preferences in the group will be merged, if False all old values are deleted

	Returns

	“Updated”, “Created”, or “Failed”

	Return type

	A string with possible values

	
stop_app()

	Stops the Addin and cleans up all of the created UI elements

Other Modules

Fusion360Utilities.py

Tools to leverage when creating a Fusion 360 Add-in

	copyright

	
	2019 by Patrick Rainsberry.

	license

	Apache 2.0, see LICENSE for more details.

	
class apper.Fusion360Utilities.AppObjects

	The AppObjects class wraps many common application objects required when writing a Fusion 360 Addin.

	
property cam

	adsk.cam.CAM from the active document

Note if the document has never been activated in the CAM environment this will return None

Returns: adsk.cam.CAM from the active document

	Return type

	Optional[CAM]

	
property design

	adsk.fusion.Design from the active document

Returns: adsk.fusion.Design from the active document

	Return type

	Optional[Design]

	
property document

	adsk.fusion.Design from the active document

Returns: adsk.fusion.Design from the active document

	Return type

	Optional[Document]

	
property export_manager

	adsk.fusion.ExportManager from the active document

Returns: adsk.fusion.ExportManager from the active document

	Return type

	Optional[ExportManager]

	
property f_units_manager

	adsk.fusion.FusionUnitsManager from the active document.

Only work in design environment.

Returns: adsk.fusion.FusionUnitsManager or None if in a different workspace than design.

	Return type

	Optional[FusionUnitsManager]

	
property product

	adsk.fusion.Design from the active document

Returns: adsk.fusion.Design from the active document

	Return type

	Optional[Product]

	
property root_comp

	Every adsk.fusion.Design has exactly one Root Component

It should also be noted that the Root Component in the Design does not have an associated Occurrence

Returns: The Root Component of the adsk.fusion.Design

	Return type

	Optional[Component]

	
property time_line

	adsk.fusion.Timeline from the active adsk.fusion.Design

Returns: adsk.fusion.Timeline from the active adsk.fusion.Design

	Return type

	Optional[Timeline]

	
property units_manager

	adsk.core.UnitsManager from the active document

If not in an active document with design workspace active, will return adsk.core.UnitsManager if possible

Returns: adsk.fusion.FusionUnitsManager or adsk.core.UnitsManager if in a different workspace than design.

	Return type

	Optional[UnitsManager]

	
apper.Fusion360Utilities.combine_feature(target_body, tool_bodies, operation)

	Creates Combine Feature in target with all tool bodies as source

	Parameters

	
	target_body (BRepBody) – Target body for the combine feature

	tool_bodies (List[BRepBody]) – A list of tool bodies for the combine

	operation (FeatureOperations) – An Enumerator defining the feature operation type

	
apper.Fusion360Utilities.create_component(target_component, name)

	Creates a new empty component in the target component

	Parameters

	
	target_component (Component) – The target component for the new component

	name (str) – The name of the new component

	Return type

	Occurrence

	Returns

	The reference to the occurrence of the newly created component.

	
apper.Fusion360Utilities.end_group(start_index)

	Ends a adsk.fusion.TimelineGroup

start_index: adsk.fusion.TimelineGroup index that is returned from start_group

	
apper.Fusion360Utilities.extrude_all_profiles(sketch, distance, component, operation)

	Create extrude features of all profiles in a sketch

The new feature will be created in the given target component and extruded by a distance

	Parameters

	
	sketch (Sketch) – The sketch from which to get profiles

	distance (float) – The distance to extrude the profiles.

	component (Component) – The target component for the extrude feature

	operation (FeatureOperations) – The feature operation type from enumerator.

	Return type

	ExtrudeFeature

	Returns

	The new extrude feature.

	
apper.Fusion360Utilities.get_a_uuid()

	Gets a base 64 uuid

	Return type

	str

	Returns

	The id that was generated

	
apper.Fusion360Utilities.get_default_dir(app_name)

	Creates a directory in the user’s home folder to store data related to this app

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.get_item_by_id(this_item_id, app_name)

	Returns an item based on the assigned ID set with item_id

	Parameters

	
	this_item_id (str) – The unique id generated originally by calling item_id

	app_name (str) – Name of the Application

	Return type

	Base

	Returns

	The Fusion 360 object that the id attribute was attached to.

	
apper.Fusion360Utilities.get_log_file(app_name)

	Gets the filename for a default log file

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.get_log_file_name(app_name)

	Gets the filename for a default log file

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.get_settings_file(app_name)

	Create (or get) a settings file name in the default app directory

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.get_std_err_file(app_name)

	Get temporary stderr file for the app

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.get_std_out_file(app_name)

	Get temporary stdout file for the app

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.import_dxf(dxf_file, component, plane, is_single_sketch_result=False)

	Import dxf file with one sketch per layer.

	Parameters

	
	dxf_file (str) – The full path to the dxf file

	component (Component) – The target component for the new sketch(es)

	plane (Union[ConstructionPlane, BRepFace]) – The plane on which to import the DXF file.

	plane – The plane on which to import the DXF file.

	is_single_sketch_result (bool) – If true will collapse all dxf layers to a single sketch.

	Return type

	ObjectCollection

	Returns

	An ObjectCollection of the created sketches

	
apper.Fusion360Utilities.item_id(item, group_name)

	Gets (and possibly assigns) a unique identifier (UUID) to any item in Fusion 360

	Parameters

	
	item (Base) – Any Fusion Object that supports attributes

	group_name (str) – Name of the Attribute Group (typically use app_name)

	Return type

	str

	Returns

	The id that was generated or was previously existing

	
class apper.Fusion360Utilities.lib_import(library_folder)

	The lib_import class is a wrapper class to allow temporary import of a local library directory

By default it assumes there is a folder named ‘lib’ in the add-in root directory.

First install a 3rd party library (such as requests) to this directory.

Assuming you are in the add-in root directory (sudo may not be required...)
sudo python3 -m pip install -t ./lib requests

Then you can temporarily import the library before making a call to the requests function.
To do this use the @apper.lib_import(…) decorator on a function that uses the library.

Here is an example function for using Requests [https://requests.readthedocs.io/en/master/]:

@apper.lib_import(config.app_path)
def make_request(url, headers):
 import requests
 r = requests.get(url, headers=headers)
 return r

	Parameters

	
	app_path (str) – The root path of the addin. Should be dynamically calculated.

	library_folder (str, optional) – Library folder name (relative to app root). Defaults to ‘lib’

	
apper.Fusion360Utilities.open_doc(data_file)

	Simple wrapper to open a dataFile in the application window

	Parameters

	data_file (DataFile) – The data file to open

	
apper.Fusion360Utilities.read_settings(app_name)

	Read a settings file into the default directory for the app

	Parameters

	app_name (str) – Name of the Application

	
apper.Fusion360Utilities.rect_body_pattern(target_component, bodies, x_axis, y_axis, x_qty, x_distance, y_qty, y_distance)

	Creates rectangle pattern of bodies based on vectors

	Parameters

	
	target_component (Component) – Component in which to create the patern

	bodies (List[BRepBody]) – bodies to pattern

	x_axis (Vector3D) – vector defining direction 1

	y_axis (Vector3D) – vector defining direction 2

	x_qty (int) – Number of instances in direction 1

	x_distance (float) – Distance between instances in direction 1

	y_qty (int) – Number of instances in direction 2

	y_distance (float) – Distance between instances in direction 2

	Return type

	ObjectCollection

	
apper.Fusion360Utilities.remove_item_id(item, group_name)

	Gets (and possibly assigns) a unique identifier (UUID) to any item in Fusion 360

	Parameters

	
	item (Base) – Any Fusion Object that supports attributes

	group_name (str) – Name of the Attribute Group (typically use app_name)

	Return type

	bool

	Returns

	True if successful and False if it failed

	
apper.Fusion360Utilities.sketch_by_name(sketches, name)

	Finds a sketch by name in a list of sketches

Useful for parsing a collection of sketches such as DXF import results.

	Parameters

	
	sketches (Sketches) – A list of sketches. (Likely would be all sketches in active document).

	name (str) – The name of the sketch to find.

	Return type

	Sketch

	Returns

	The sketch matching the name if it is found.

	
apper.Fusion360Utilities.start_group()

	Starts a time line group

	Return type

	int

	Returns

	The index of the adsk.fusion.Timeline where the adsk.fusion.TimelineGroup will begin

	
apper.Fusion360Utilities.write_settings(app_name, settings)

	Write a settings file into the default directory for the app

	Parameters

	
	app_name (str) – Name of the Application

	settings (dict) – Stores a dictionary as a json string

Fusion360DebugUtilities.py

Utilities to aid in debugging a Fusion 360 Addin

	copyright

	
	2019 by Patrick Rainsberry.

	license

	Apache 2.0, see LICENSE for more details.

	
apper.Fusion360DebugUtilities.get_log_file_name()

	Creates directory and returns file name for log file
:param log: tbd

	
apper.Fusion360DebugUtilities.perf_log(log, function_reference, command, identifier='')

	Performance time logging function
:param log:
:param function_reference:
:param command:
:param identifier:

	
apper.Fusion360DebugUtilities.perf_message(log)

	Performance time logging function
:param log: tbd

	
apper.Fusion360DebugUtilities.variable_message(variable, extra_info='')

	Displays the value of any single variable as long as the value can be converted to text

	Parameters

	
	variable – variable to print

	extra_info – Any other info to display in the message box

	
apper.Fusion360DebugUtilities.variables_message(variables)

	Print a list of list of variables

Format of variables should be [[Variable name 1, variable value 1], [Variable name 2, variable value 2], …]

	Parameters

	variables (list) – A list of lists of any string based variables from your add-in.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 apper	

 	
 	
 apper.Fusion360DebugUtilities	

 	
 	
 apper.Fusion360Utilities	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add_command() (apper.FusionApp method)

 	add_command_event() (apper.FusionApp method)

 	add_custom_event() (apper.FusionApp method)

 	add_custom_event_no_thread() (apper.FusionApp method)

 	add_custom_feature() (apper.FusionApp method)

 	add_document_event() (apper.FusionApp method)

 	add_web_request_event() (apper.FusionApp method)

 	
 	add_workspace_event() (apper.FusionApp method)

 	
 apper

 	module

 	
 apper.Fusion360DebugUtilities

 	module

 	
 apper.Fusion360Utilities

 	module

 	AppObjects (class in apper.Fusion360Utilities)

C

 	
 	cam() (apper.Fusion360Utilities.AppObjects property)

 	check_for_updates() (apper.FusionApp method)

 	
 	combine_feature() (in module apper.Fusion360Utilities)

 	command_id_from_name() (apper.FusionApp method)

 	create_component() (in module apper.Fusion360Utilities)

D

 	
 	design() (apper.Fusion360Utilities.AppObjects property)

 	
 	document() (apper.Fusion360Utilities.AppObjects property)

E

 	
 	end_group() (in module apper.Fusion360Utilities)

 	
 	export_manager() (apper.Fusion360Utilities.AppObjects property)

 	extrude_all_profiles() (in module apper.Fusion360Utilities)

F

 	
 	f_units_manager() (apper.Fusion360Utilities.AppObjects property)

 	
 	FusionApp (class in apper)

G

 	
 	get_a_uuid() (in module apper.Fusion360Utilities)

 	get_all_preferences() (apper.FusionApp method)

 	get_default_dir() (in module apper.Fusion360Utilities)

 	get_group_preferences() (apper.FusionApp method)

 	get_item_by_id() (in module apper.Fusion360Utilities)

 	
 	get_log_file() (in module apper.Fusion360Utilities)

 	get_log_file_name() (in module apper.Fusion360DebugUtilities)

 	(in module apper.Fusion360Utilities)

 	get_settings_file() (in module apper.Fusion360Utilities)

 	get_std_err_file() (in module apper.Fusion360Utilities)

 	get_std_out_file() (in module apper.Fusion360Utilities)

I

 	
 	import_dxf() (in module apper.Fusion360Utilities)

 	
 	initialize_preferences() (apper.FusionApp method)

 	item_id() (in module apper.Fusion360Utilities)

L

 	
 	lib_import (class in apper.Fusion360Utilities)

M

 	
 	
 module

 	apper

 	apper.Fusion360DebugUtilities

 	apper.Fusion360Utilities

O

 	
 	open_doc() (in module apper.Fusion360Utilities)

P

 	
 	perf_log() (in module apper.Fusion360DebugUtilities)

 	
 	perf_message() (in module apper.Fusion360DebugUtilities)

 	product() (apper.Fusion360Utilities.AppObjects property)

R

 	
 	read_json_file() (apper.FusionApp static method)

 	read_settings() (in module apper.Fusion360Utilities)

 	rect_body_pattern() (in module apper.Fusion360Utilities)

 	
 	remove_item_id() (in module apper.Fusion360Utilities)

 	root_comp() (apper.Fusion360Utilities.AppObjects property)

 	run_app() (apper.FusionApp method)

S

 	
 	save_preferences() (apper.FusionApp method)

 	sketch_by_name() (in module apper.Fusion360Utilities)

 	
 	start_group() (in module apper.Fusion360Utilities)

 	stop_app() (apper.FusionApp method)

T

 	
 	time_line() (apper.Fusion360Utilities.AppObjects property)

U

 	
 	units_manager() (apper.Fusion360Utilities.AppObjects property)

V

 	
 	variable_message() (in module apper.Fusion360DebugUtilities)

 	
 	variables_message() (in module apper.Fusion360DebugUtilities)

W

 	
 	write_settings() (in module apper.Fusion360Utilities)

 nav.xhtml

 Table of Contents

 		
 Welcome to apper ‘s documentation!

 		
 Intro

 		
 Installation

 		
 Prerequisites

 		
 Python interpreter

 		
 Install Git

 		
 Adjust your path

 		
 Install cookiecutter

 		
 Using the Template

 		
 Navigate to the Fusion 360 Addins directory

 		
 Run the cookiecutter template

 		
 Open your new add-in

 		
 Existing Projects

 		
 Adding a Git Submodule

 		
 Status of a Git Submodule

 		
 Update a Git Submodule

 		
 3rd Party Libraries

 		
 Using 3rd Party Libraries with Fusion 360 Add-ins

 		
 The lib_import class

 		
 Commands

 		
 App Structure

 		
 Imports

 		
 Create the App

 		
 Standard Commands

 		
 Sample Command 1

 		
 Command Definition

 		
 Command Class

 		
 Sample Command 2

 		
 on_create

 		
 on_input_changed

 		
 Events

 		
 Developer Interface

 		
 Core Apper Modules

 		
 Other Modules

 		
 Fusion360Utilities.py

 		
 Fusion360DebugUtilities.py

_images/addin_dialog.png
soup SURFACE ‘SHEET METAL TOooLs

CARE & =N

MAKEY ADD-INS ¥ Thad INSPEC
ece Scripts and Add-Ins
Bl Add-ins

% My Add-ins %
@ 100KGarages
@ FusionApperSample

FusionDisplayer

@ FusionParameters

@ FusionSheeter

@ FusionTolStacker

@ MakeTime

@ partsacad

Create Edit Stop | PR

[# Details Run on Startup

_static/plus.png

_static/file.png

_static/addin_dialog.png
soup SURFACE ‘SHEET METAL TOooLs

CARE & =N

MAKEY ADD-INS ¥ Thad INSPEC
ece Scripts and Add-Ins
Bl Add-ins

% My Add-ins %
@ 100KGarages
@ FusionApperSample

FusionDisplayer

@ FusionParameters

@ FusionSheeter

@ FusionTolStacker

@ MakeTime

@ partsacad

Create Edit Stop | PR

[# Details Run on Startup

_static/minus.png

